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Motivation

§ Model order reduction ...
... allows to perform computations for many different configurations
(parameters, geometry,...) very fast
... without jeopardizing accuracy

§ Topic of this talk: Localization and randomization facilitate (nearly)
real-time simulations of large-scale problems
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Projection-based model order reduction

Outline

§ Projection-based model order reduction in a nutshell

Randomized error estimation

§ Localized Model Order Reduction

Constructing optimal local approximation spaces (in space)
Approximating optimal local approximation spaces via random
sampling
Generating quasi-optimal local approximation spaces in time by random
sampling
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Projection-based model order reduction

Parametrized Partial Differential Equation

§ Parameter vector µ P P; compact parameter set P Ă RP

§ Parametrized PDE: Given any µ P P, find upµq P X , s.th.

Apµqupµq “ f pµq in X 1.

§ Ω Ă R3: bounded domain with Lipschitz boundary BΩ

§ H1
0 pΩq

d Ă X Ă H1pΩqd (d “ 1, 2, 3); X 1: dual space
§ Apµq : X Ñ X 1: inf-sup stable, continuous linear differential operator
§ f pµq : X Ñ R: continuous linear form
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Projection-based model order reduction

Parametrized Partial Differential Equation

§ Parameter vector µ P P; compact parameter set P Ă RP

§ Parametrized PDE: Given any µ P P, find upµq P X , s.th.

Apµqupµq “ f pµq in X 1.

§ High-dimensional discretization:
§ Introduce high-dimensional FE space XN Ă X with dimpXN q “ N

(assume small discretization error)
§ High-dimensional approximation: Given any µ P P, find uN pµq P XN ,

s.th.
ApµquN pµq “ f pµq in XN 1

.

§ Issue: Require uN pµq in real time and/or for many µ P P.

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 4 / 49



Projection-based model order reduction

Parametrized Partial Differential Equation

§ Parameter vector µ P P; compact parameter set P Ă RP

§ Parametrized PDE: Given any µ P P, find upµq P X , s.th.

Apµqupµq “ f pµq in X 1.

§ High-dimensional discretization:
§ Introduce high-dimensional FE space XN Ă X with dimpXN q “ N

(assume small discretization error)
§ High-dimensional approximation: Given any µ P P, find uN pµq P XN ,

s.th.
ApµquN pµq “ f pµq Apµq P RNˆN , f pµq P RN .

§ Issue: Require uN pµq in real time and/or for many µ P P.
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Projection-based model order reduction

Projection-based model order reduction: key concept

§ Exploit: uN pµq belongs to “solution
manifold”MN “ tuN pµq |µ P Pu Ă XN of
typically very low dimension

§ Offline: Construct reduced space XN from
solutions uN pµ̄i q, i “ 1, ...,N
(e.g. by a Greedy algorithm, Proper
Orthogonal Decomposition,...)

§ Online: Galerkin projection on XN : Given any µ˚ P P, find uNpµ˚q P XN ,
s.th.

Apµ˚quNpµ˚q “ f pµ˚q in pXNq1.
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Projection-based model order reduction

Construction of reduced basis B via randomization

§ First Goal: Given a matrix S P Rmˆn and an integer k find an
orthonormal matrix Q of rank k such that S « QQ˚S .

§ Approach:
§ Draw k random vectors rj P Rn (say standard Gaussian)
§ Form sample vectors yj “ Srj P Rm j “ 1, . . . , k .
§ Orthonormalize yj ÝÑ qj , j “ 1, . . . , k and define Q “ rq1, . . . , qk s

§ Result: If S has exactly rank k then qj , j “ 1, . . . , k span the range of
S at high probability. But also in the general case qj , j “ 1, . . . , k
often perform nearly as good as the k leading left singular vectors of S

§ Compute randomized SVD:
§ Form C “ Q˚S which yields S « QC
§ Compute SVD of of the small matrix C “ rUΣV ˚ and set B “ Q rU

map which is approximately low rank
For a review see for instance [Halko, Martinsson, Tropp 2011]
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Construction of reduced basis B via randomization

§ First Goal: Given a matrix S P Rmˆn and an integer k find an
orthonormal matrix Q of rank k such that S « QQ˚S .

§ Approach:
§ Draw k random vectors rj P Rn (say standard Gaussian)
§ Form sample vectors yj “ Srj P Rm j “ 1, . . . , k .
§ Orthonormalize yj ÝÑ qj , j “ 1, . . . , k and define Q “ rq1, . . . , qk s

§ Result: If S has exactly rank k then qj , j “ 1, . . . , k span the range of
S at high probability. But also in the general case qj , j “ 1, . . . , k
often perform nearly as good as the k leading left singular vectors of S

§ Compute randomized SVD:
§ Form C “ Q˚S which yields S « QC
§ Compute SVD of of the small matrix C “ rUΣV ˚ and set B “ Q rU

Works also if S is not a data matrix but some linear map which is
approximately low rank
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Projection-based model order reduction

References for randomized construction of reduced models

§ Hochman et al 2014
§ Alla, Kutz 2015
§ Zahm, Nouy 2016
§ Balabanov, Nouy 2019, 2019
§ Cohen, Dahmen, DeVore, Nichols 2020
§ Saibaba 2020
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Projection-based model order reduction

A posteriori error estimation

§ A posteriori error estimator is important both
to construct reduced order models via the greedy algorithm
to certify the approximation: how large is the error (in some QoI)?

Proposition (A posteriori error bound)

The error estimator r∆Npµq “ βLBpµq
´1}f pµq ´ ApµquNpµq}XN 1 with

βLBpµq ď βN pµq satisfies

}uN pµq ´ uNpµq}X ď r∆Npµq ď
γN pµq

βLBpµq
}uN pµq ´ uNpµq}X ,

where βN pµq :“ inf
vPXN

sup
wPXN

xApµqv ,wy
}v}X }w}X

and γN pµq “ sup
vPXN

sup
wPXN

xApµqv ,wy
}v}X }w}X

.

§ Problem: Good estimate of stability constants often computationally
infeasible; using simply the residual may perform very poorly,
especially say for Helmholtz-type problems.
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Projection-based model order reduction

Outline

§ Projection-based model order reduction in a nutshell

Randomized error estimation

§ Localized Model Order Reduction

Constructing optimal local approximation spaces (in space)
Approximating optimal local approximation spaces via random
sampling
Generating quasi-optimal local approximation spaces in time by random
sampling

References:
§ KS, Zahm, Patera, Randomized residual-based error estimators for parametrized

equations. SIAM J. Sci. Comput., 2019.
§ KS, Zahm, Randomized residual-based error estimators for the proper generalized

decomposition approximation of parametrized problems, Internat. J. Numer.
Methods Engrg., to appear, 2020.
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Randomized a posteriori error estimation

References for randomization within error estimation

§ Cao, Petzold 2004, Homescu, Petzold, Serban 2005
§ Drohmann, Carlberg 2015, Trehan, Carlberg, and Durlofsky 2017
§ Manzoni, Pagani, Lassila 2016
§ Janon, Nodet, Prieur 2016
§ Zahm, Nouy 2016
§ Buhr, KS 2018
§ Balabanov, Nouy 2019
§ Eigel, Schneider, Trunschke, Wolf 2020
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Randomized a posteriori error estimation Goal/Motivation

Randomized a posteriori error estimation

§ Goal: Develop a posteriori error estimator for model order reduction
that does not contain constants whose estimation is expensive (avoid
estimating inf-sup constant and thus improve effectivity of estimator)

§ Setting: We query a finite number of parameters for which we want to
estimate the approximation error; allows computing statistics in UQ

§ Approach: Exploit concentration inequalities:

Proposition (Concentration inequality, Johnson-Lindenstrauss)

Choose rows of matrix Φ P RKˆN say as K independent copies of standard
Gaussian random vectors scaled by 1{

?
K and let S Ă RN be a finite set.

Moreover, assume K ě pC pzq{ε2q logp#S{δq. Then we have

P
 

p1´ εq}x ´ y}22 ď }Φx ´ Φy}22 ď p1` εq}x ´ y}22 @x , y P S
(

ě 1´ δ.

see for instance [Boucheron, Lugosi, Massart 2012], [Vershynin 2018]
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

§ Z P RN : random vector such that

}v}2Σ “ vTΣv “ EppZT vq2q @v P RN ,

where Σ is matrix e.g. associated with H1- or L2-inner product or a
quantity of interest

ùñ pZT vq2 is an unbiased estimator of }v}2Σ

§ For simplicity: Assume Z „ N p0,Σq is a Gaussian vector with zero
mean and covariance matrix Σ

§ Z1, . . . ,ZK : K independent copies of Z

§ Consider the following (unbiased) Monte-Carlo estimator of }v}2Σ

1
K

K
ÿ

i“1

pZT
i vq2.
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

0 1 2 3

K = 10

K = 20 § chi-squared distribution
§ concentration around 1 (that

means error estimator has
close to perfect effectivity 1)
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

w “ 2 w “ 3 w “ 4 w “ 5 w “ 10
#S “ 1 24 8 6 5 3
#S “ 100 48 16 11 9 6
#S “ 1000 60 20 13 11 7
#S “ 106 96 31 21 17 11

Table: Values for K that guarantee (1) for all µj P S with δ “ 10´2.
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

Define ∆pµq :“
´

1
K

řK
i“1pZ

T
i epµqq2

¯1{2

Problem: estimator ∆pµq “
´

1
K

řK
i“1pZ

T
i pu

N pµjq ´ uNpµjqqq
2
¯1{2

involves high-dimensional finite element solution
ùñ Computationally infeasible in the online stage
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

§ Exploit error residual relationship

ZT
i epµq “ ZT

i Apµq´1pf pµq ´ ApµquNpµq
looooooooooomooooooooooon

residual rpµq:“

“ pApµq´TZi
loooomoooon

dual problem

qT rpµq

§ Define solutions of dual problems with random right-hand sides Zi :

Y N
i pµq :“ Apµq´TZi

§ Approximation of the dual solutions via model order reduction:

yN
i
pµq « yNdu

i
pµq P rY Ă XN ; rY : dual reduced space.

§ Define fast-to-evaluate randomized error estimator

∆Ndupµq :“

˜

1
K

K
ÿ

i“1

pyNdu

i
pµqT rpµqq2

¸1{2
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

Proposition
Choose S P N in the offline stage. Then, in the online stage for any given
w ą

?
e and δ ą 0 we have for S different parameters values µj , j “ 1, . . . ,S in a

finite parameter set S “ tµ1, . . . , µSu and

K ě
logpSq ` logpδ´1q

logpw{
?

eq
that ∆Ndu pµjq :“

˜

1
K

K
ÿ

i“1

pyNdu

i
pµjq

T rpµjqq
2

¸1{2

satisfies

P
!

pαwq´1∆Ndu pµjq ď }epµjq}Σ ď pαwq∆Ndu pµjq, µj P S,
)

ě 1´ δ,
w

1

where

α “ max
µPP

ˆ

max

"

∆pµq

∆Ndu pµq
,

∆Ndu pµq

∆pµq

*˙

ě 1.

and we assume invertibility of Σ and that there holds almost surely ε ď w´1.
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Randomized a posteriori error estimation Numerical Experiments

Numerical experiments: acoustics in 2D

§ Consider on Ω “ p0, 1q ˆ p0, 1q

´Bx1x1upx ;µq ´ µ1Bx2x2upx ;µq ´ µ2upx ;µq “ f pxq in Ω,

upx ;µq “ 0 on the bottom,
∇upx ;µq ¨ n “ 0 on the sides,

κpµ1q∇upx ;µq ¨ n “ cospπxq on the top.

§ m P P “ r0.2, 1.2s ˆ r10, 50s

§ µ1

0.2 0.4 0.6 0.8 1 1.2

µ
2

10

20

30

40

50
Resonances

§ high dimensional discretization: linear FE, h “ 0.01 in each direction
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Randomized a posteriori error estimation Numerical Experiments

Histograms of effectivity ∆Ndu{}uN pµq ´ uNpµq}H1pΩq

Figure: #S “ 104, Nprimal “ 20, q “ 0.99, 100 realizations, vertical dashed lines:
1{w and w , grey area: 1{ptol wq and tol w , where α « tol , solid lines:
chi-squared distribution
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Localized Model Order Reduction

Outline

§ Projection-based model order reduction in a nutshell

Randomized error estimation

§ Localized Model Order Reduction

Constructing optimal local approximation spaces (in space)
Approximating optimal local approximation spaces via random
sampling
Generating quasi-optimal local approximation spaces in time by random
sampling

References:
§ Review: Buhr, Iapichino, Ohlberger, Rave, Schindler, and KS. Localized model

reduction for parameterized problems. Invited book chapter in Handbook on
Model Order Reduction. Walter De Gruyter GmbH, Berlin, 2020; also on arXiv.

§ KS, Patera, Optimal local approximation spaces for component-based static
condensation procedures, SIAM J. Sci. Comput., 2016.
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Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:
§ Curse of parameter dimensionality: many parameters require

prohibitively large reduced spaces
§ No topological flexibility (although geometric variation is possible)
§ Possibly high computational costs in the offline stage
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Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:
§ Curse of parameter dimensionality: many parameters require

prohibitively large reduced spaces
§ No topological flexibility (although geometric variation is possible)
§ Possibly high computational costs in the offline stage

ÝÑ Localized model order reduction

Further advantages:
§ Allows to use different (sizes of) reduced spaces in different parts of

the domain (similar to hp-methods)
§ (Local) changes of the PDE, the geometry in the online stage are

possible
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Localized Model Order Reduction Motivation for localized model order reduction

Construction of local reduced spaces, some references

§ Existing approaches ...
... either provided a fast convergence but error analysis seems
challenging: [Eftang, Patera 13], [Martini, Rozza, Haasdonk 15], ...
... or came with a rigorous error analysis but slow convergence:
[Hetmaniuk, Lehoucq 10], [Jakobsson, Bengzon, Larson 11],
[Hetmaniuk, Klawonn 14], ...

§ Idea: Use concepts from multiscale methods introduced in [Babuška,
Lipton 11], [Malqvist, Peterseim 14] that ...

... rely on the decay behavior of the solution of certain PDEs even for
rough coefficients
... and the compactness of certain operators thanks to the Caccioppoli
inequality (bounds energy norm of solutions of the PDE by L2-norm on
a larger domain)

ùñ Yields superalgebraic convergence and rigorous error analysis
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LMOR: optimal approximation in space Challenges

Localized model order reduction

Challenges:
§ We can only exploit that the global solution solves PDE locally
§ But: No knowledge of the trace of the global solution on Γout

ùñ Infinite dimensional parameter space
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LMOR: optimal approximation in space Challenges

Localized model order reduction

Challenges:
§ We can only exploit that the global solution solves PDE locally
§ But: No knowledge of the trace of the global solution on Γout

ùñ Infinite dimensional parameter space

Idea:
§ Restrict to space of functions that solve the PDE locally on Ω for arbitrary

boundary conditions on Γout

§ Exploit that for those local solutions we have a very fast decay of higher
frequencies from Γout to Ωin, Γin (Ñ Caccioppoli inequality)

§ yields optimal local approximation spaces in the sense of Kolmogorov
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LMOR: optimal approximation in space Challenges

Optimal local approximation spaces

Definition (Kolmogorov n-width, optimal subspaces (Kolmogoroff 1936))

S , R Hilbert spaces, Rn: subspace of R , dim Rn “ n, T : S Ñ R linear,
continuous operator. The Kolmogorov n-width is defined as

dnpT pSq; Rq :“ inf
dim Rn“n

sup
ηPS

inf
ζPRn

}T pηq ´ ζ}R
}η}S

A subspace Rn with dim Rn ď n, that satisfies

dnpT pSq; Rq “ sup
ηPS

inf
ζPRn

}T pηq ´ ζ}R
}η}S

is called an optimal subspace.
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

§ Consider Ω “ p´5, 5q ˆ p0, 1q

´∆u “ 0, in Ω,
du

dy
px , 1q “

du

dy
px , 0q “ 0.

§ plus: arbitrary Dirichlet boundary conditions on Γout .
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

§ Consider Ω “ p´5, 5q ˆ p0, 1q

´∆u “ 0, in Ω,
du

dy
px , 1q “

du

dy
px , 0q “ 0.

§ plus: arbitrary Dirichlet boundary conditions on Γout .
§ separation of variables: all harmonic functions on Ω have the form

upx , yq “ a0 ` b0x `
8
ÿ

n“1

cospnπyqran coshpnπxq ` bn sinhpnπxqs

§ Example: Prescribe cosp3πyq on Γout and thus n “ 3:
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

§ Consider Ω “ p´5, 5q ˆ p0, 1q

´∆u “ 0, in Ω,
du

dy
px , 1q “

du

dy
px , 0q “ 0.

§ plus: arbitrary Dirichlet boundary conditions on Γout .
§ separation of variables: all harmonic functions on Ω have the form

upx , yq “ a0 ` b0x `
8
ÿ

n“1

cospnπyqran coshpnπxq ` bn sinhpnπxqs

ùñ Extremely rapid and exponential decay of the cos-functions in the
interior of Ω for higher n.

ùñ Most harmonic extensions of the basis functions cospnπyq,
n “ 0, ...,8 are practically zero on Γin.

ùñ A reduced space of very low dimension on Γin will already yield a very
good approximation!
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

§ Consider Ω “ p´5, 5q ˆ p0, 1q

´∆u “ 0, in Ω,
du

dy
px , 1q “

du

dy
px , 0q “ 0.

§ plus: arbitrary Dirichlet boundary conditions on Γout .
§ separation of variables: all harmonic functions on Ω have the form

upx , yq “ a0 ` b0x `
8
ÿ

n“1

cospnπyqran coshpnπxq ` bn sinhpnπxqs

ùñ Extremely rapid and exponential decay of the cos-functions in the
interior of Ω for higher n.

Question: How can we generalize this idea?
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

The space of all local solutions of the PDE on Ω

§ Consider the space of all local solutions of the PDE1 on Ω

H :“ tw P H1pΩq : with Aw “ 0 P X 1u.

§ global solution of the PDE restricted to Ω lies in H!
§ We are interested in u|Γin

or u|Ωin
and thus introduce

R :“ tw |Γin
, w P Hu or R :“ tw |Ωin

, w P Hu,
and S :“ tw |Γout , w P Hu.

1For theoretical purposes one needs to consider the quotient space H̃ :“ H{ kerpAq
at certain instances.
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer operator

§ We introduce a transfer operator

T : S Ñ R

§ For w P H and thus w |Γout P S we define

T pw |Γout q :“ w |Γin
or T pw |Γout q :“ w |Ωin

.

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 23 / 49



LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer operator

§ We introduce a transfer operator

T : S Ñ R

§ For w P H and thus w |Γout
P S we define

T pw |Γout q :“ w |Γin
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer operator

§ We introduce a transfer operator

T : S Ñ R

§ For w P H and thus w |Γout P S we define

T pw |Γout
q :“ w |Γin

or T pw |Γout
q :“ w |Ωin

.
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer operator

§ We introduce a transfer operator T : S Ñ R

§ For w |Γout P S we define T pw |Γout q :“ w |Γin
or T pw |Γout q :“ w |Ωin

.
§ T is compact thanks to the Caccioppoli inequality:

Lemma (Caccioppoli inequality for heat conduction)

Let κ P L8pΩq fulfill 0 ă κ0 ď κ ď κ1 with constants κ0, κ1, define
X 0 “ tv P H1pΩq, v |Γout “ 0u, let u P X :“ tv P H1pΩq, v |Γout “ gu satisfy

ż

Ω
κ∇u ¨∇v “ 0 @v P X 0.

Then on Ω˚ Ĺ Ω˚˚ Ă Ω with distpBΩ˚zBΩ, BΩ˚˚zBΩq ą % ą 0 there holds
ż

Ω˚
κ|∇u|2 dx ď

c

%2 }u}
2
L2pΩ˚˚zΩ˚q.
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer operator

§ We introduce a transfer operator T : S Ñ R
§ For w |Γout P S we define T pw |Γout q :“ w |Γin

or T pw |Γout q :“ w |Ωin
.

§ T is compact thanks to the Caccioppoli inequality.

§ Introduce adjoint operator T ˚ and consider the eigenvalue problem

T ˚Tw |out “ λw |out for w P H.
§ Equivalent formulation: Find pϕj , λjq P pH,R`q such that

p ϕj |Din
, w |Din

qR “ λj p ϕj |Γout , w |Γout qS @w P H,Din “ Γin,Ωin
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LMOR: optimal approximation in space Construction of optimal local approximation spaces

Transfer eigenvalue problem

Proposition (Transfer eigenvalue problem)
§ ϕj and λj : eigenfunctions and eigenvalues of the transfer eigenvalue

problem: Find pϕj , λjq P pH,R`q such that

p ϕj |Din
, w |Din

qR “ λj p ϕj |Γout , w |Γout qS @w P H,Din “ Γin,Ωin

§ List λj such that λ1 ě λ2 ě ..., and λj Ñ 0 as j Ñ8.
§ The optimal space on Γin or Ωin is given by

Rn :“ spantφsp1 , ..., φ
sp
n u, φ

sp
j “ Tϕj |Γout , j “ 1, ..., n.

§

dnpT pSq; Rq “ sup
ξPS

inf
ζPRn

}T ξ ´ ζ}R
}ξ}S

“
a

λn`1
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LMOR: optimal approximation in space A priori error bound

A priori error bound

Proposition (A priori error bound (KS, Patera 2016))

u: (exact) solution,
un: continuous port reduced static condensation solution employing the
optimal port space Rn.
We have:

}|u ´ un}|

}|u}|
ď C1pΩq

a

λn`1,

where C1pΩq does neither depend on u nor on un.
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LMOR: optimal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

cracked I-Beam, uniform Young’s modulus Ei “ 1 in both components
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Figure: eigenvalues λn Figure: component mesh
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LMOR: optimal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

Stiffened plate — simplified model for ship stiffener
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Figure: eigenvalues λj

§ Ei “ 1 in grey areas, i “ 1, 2
§ Ei “ E r

i P r1, 20s varies in
red areas

Figure: mesh in Ωi
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LMOR: optimal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

Stiffened plate — simplified model for ship stiffener
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Figure: eigenvalues λj

Figure: plate under bending

Figure: stiffened plate under bending
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LMOR: optimal approximation in space Performance of the global approximation

Comparison with other reduced interface spaces

Solid beam, Ei “ E r
i “ 12, g |Γ1 “ p0, 0, 0q

T , g |Γ2 “ p1, 1, 1q
T

§ Legendre polynomials:
components of the
displacement are solutions of
scalar singular
Sturm-Liouville problems

§ Empirical port modes
constructed by a pairwise
training algorithm [Eftang,
Patera 2013]

§ spectral modes constructed
by the spectral greedy
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Figure: }|uhpµq ´ umpµq}|µ{}|u
hpµq}|µ

2Pi “ r1, 10s ˆ r1, 1s for µi “ pEi ,E
r
i q
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LMOR: optimal approximation in space Performance of the global approximation

Numerical experiments: shiploader3

3Results by company Akselos S.A.; KS has no financial interest in Akselos S.A.
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LMOR: optimal approximation in space Performance of the global approximation

Numerical experiments: shiploader3

Figure: shiploader shiploader with defect

§ discretization with FEM:
ą20 millions of DOFs

§ size of Schur complement
system: «349 000

§ size of reduced Schur
complement system: «12 000

§ simulation time with reduced
port spaces: « 2 sec

3Results by company Akselos S.A.; KS has no financial interest in Akselos S.A.
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LMOR: optimal approximation in space Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find pϕj , λjq P pH,R`q such that

p T hpϕj |Γout q , T hpw |Γout q qR “ λj p ϕj |Γout , w |Γout qS @w P H

H “ t set of all local solutions of the PDE with arbitrary Dirichlet b. c. u

1 Introduce a FE discretization with Nout degrees of freedom (DOFs) on
Γout and Nin DOFs on Γin or Ωin

2 Solve for each basis function on Γout the PDE locally
ùñ number of required local solutions of the PDE scales with the
number of DOFs on Γout and thus depends on the discretization

3 Assemble and solve generalized eigenvalue problem
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LMOR: optimal approximation in space Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find pϕj , λjq P pH,R`q such that

p T hpϕj |Γout q , T hpw |Γout q qR “ λj p ϕj |Γout , w |Γout qS @w P H

H “ t set of all local solutions of the PDE with arbitrary Dirichlet b. c. u

1 Introduce a FE discretization with Nout degrees of freedom (DOFs) on
Γout and Nin DOFs on Γin or Ωin

2 Solve for each basis function on Γout the PDE locally
ùñ number of required local solutions of the PDE scales with the
number of DOFs on Γout and thus depends on the discretization

3 Assemble and solve generalized eigenvalue problem

Problem: For large number of DOFs on Γout the approximation of the
transfer eigenvalue problem can be very/prohibitively expensive

especially in 3D
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Randomized local model reduction (space)

Outline

§ Projection-based model order reduction in a nutshell

Randomized error estimation

§ Localized Model Order Reduction

Constructing optimal local approximation spaces (in space)
Approximating optimal local approximation spaces via random
sampling
Generating quasi-optimal local approximation spaces in time by random
sampling

Reference: Buhr, KS, Randomized Local Model Order Reduction, SIAM J. Sci.
Comput., 2018.
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Randomized local model reduction (space)

References on randomization in multiscale, domain
decomposition methods

§ Wang, Vouvakis 2015
§ Calo, Efendiev, Galvis, Li 2016
§ Owhadi 2015, 2017
§ Chen, Li, Lu, and Wright, arXiv:1801.06938; arXiv:1807.08848
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Randomized local model reduction (space) Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra4

§ Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on Γout as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

§ Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE uh|Γin

or uh|Ωin
.

§ Define reduced space Rn
rand as the span of n such evaluations uh|Γin

or
uh|Ωin

4for a review see [Halko, Martinsson, Tropp 11]
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Randomized local model reduction (space) Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra4

§ Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on Γout as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

§ Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE uh|Γin

or uh|Ωin
.

§ Define reduced space Rn
rand as the span of n such evaluations uh|Γin

or
uh|Ωin

Questions: What is the quality of such an approximation?
(How) can we determine the dimension of the reduced space for a given

tolerance?

4for a review see [Halko, Martinsson, Tropp 11]
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Randomized local model reduction (space) Probabilistic a priori error bound

Probalistic a priori error bound5

Proposition (A priori error bound (Buhr, KS 2018))

Under the above assumptions there holds for n, p ě 2

E

«

sup
ξPSh

inf
ζPRn`p

rand

}T hξ ´ ζ}R
}ξ}S

ff

ď Ch

$

&

%

ˆ

1`
?
n

?
p ´ 1

˙

b

λh
n`1`

e
?
n`p

p

˜

ÿ

jąn

λh
j

¸1{2
,

.

-

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

sdf ; alsjfdlslkadfaslkfdasdfasasfd ; asdjfl ; asfjd„ c
?

n
b

λhn`1

Optimal convergence rate achieved with transfer eigenvalue problem:

dnpT pSq; Rq “ sup
ξPS

inf
ζPRn

}T ξ ´ ζ}R
}ξ}S

“
a

λn`1

5based on results in [Halko, Martinsson, Tropp 11]
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Randomized local model reduction (space) Probabilistic a priori error bound

Probalistic a priori error bound5

Proposition (A priori error bound (Buhr, KS 2018))

Under the above assumptions there holds for n, p ě 2

E

«

sup
ξPSh

inf
ζPRn`p

rand

}T hξ ´ ζ}R
}ξ}S

ff

ď Ch

$

&

%

ˆ

1`
?
n

?
p ´ 1

˙

b

λh
n`1`

e
?
n`p

p

˜

ÿ

jąn

λh
j

¸1{2
,

.

-

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

sdf ; alsjfdlslkadfaslkfdasdfasasfd ; asdjfl ; asfjd„ c
?

n
b

λhn`1

where
§ Ch “

b

λmax pMRq

λminpMRq

b

λmax pMS q

λminpMS q

§ pMRqi ,j “ pψj , ψi qR , ψi : FE basis functions
§ pMSqi ,j “ pψj , ψi qS , ψi : FE basis functions
§ p: oversampling parameter

5based on results in [Halko, Martinsson, Tropp 11]K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 32 / 49



Randomized local model reduction (space) Adaptive randomized range finder algorithm

Probablistic a posteriori error bound6

Proposition (Probablistic a posteriori error bound (Buhr, KS 2018))

§ tωpiq : i “ 1, 2, ..., ntu: standard Gaussian vectors

§ DS : RNout Ñ Sh; pc1, ..., cNout q ÞÑ χ, χ “
řNout

i“1 ciψi , ψi : FE basis functions

Define
∆pnt , δtfq :“

cestpnt , δtfq
b

λ
MS
min

max
iP1,...,nt

ˆ

inf
ζPRn

rand

}T hDSω
piq
´ ζ}R

˙

Then there holds

sup
ξPSh

inf
ζPRn

rand

}T hξ ´ ζ}R
}ξ}S

ď ∆pnt , δtfq ď

˜

λ
MS
max

λ
MS
min

¸1{2

ceffpnt , δtfq sup
ξPSh

inf
ζPRn

rand

}T hξ ´ ζ}R
}ξ}S

with a probability of at least 1´ δtf .

6Estimator extends results in [Halko, Martinsson, Tropp 11]; effectivity bound new
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Randomized local model reduction (space) Adaptive randomized range finder algorithm

Adaptive randomized range finder7

§ Input: Select tolerance tol , failure probability δalgofail
§ While ∆pnt , δtf q ą tol

Generate random boundary values on Γout

Apply transfer operator T h to random boundary conditions
Add new solution to Rn

rand

Orthonormalize solutions
Update a posteriori error estimator

§ Output: Rn
rand such that supξPSh infζPRn

rand

}T hξ´ζ}R
}ξ}S

ď tol with
probability at least 1´ δalgofail

7adapted from [Halko, Martinsson, Tropp 11]
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Randomized local model reduction (space) Numerical experiments

Numerical Experiments for analytic test problem

Numerical Experiments: interfaces

§ local (oversampling) domain Ω :“ p´1, 1q ˆ p0, 1q
§ Consider PDE: ´∆u “ 0 in Ω

§ Goal: Construct reduced space on Γin

Figure: Ω
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Randomized local model reduction (space) Numerical experiments

Heat conduction: ´∆u “ 0 on Ω “ p´1, 1q ˆ p0, 1q

0 0.5 1
´2
´1
0
1
2

x2

0 0.5 1
´2
´1
0
1
2

x2

1
2
3
4
5

Figure: with optimal basis the generated basis generated by randomized range
sfklasfdjaslf;lasfjals;fjas;lf;alsfalfjsdlfjioewjfsdlfjsdlfsf finder algorithm
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Randomized local model reduction (space) Numerical experiments

Heat conduction: ´∆u “ 0 on Ω “ p´1, 1q ˆ p0, 1q
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Randomized local model reduction (space) Numerical experiments

Heat conduction: ´∆u “ 0 on Ω “ p´1, 1q ˆ p0, 8q

CPU times

Properties of basis generation
Algorithm 2 Scipy/ARPACK

(resulting) basis size n 39 39
operator evaluations 59 79

adjoint operator evaluations 0 79
execution time in s (without factorization) 20.4 s 47.9 s

Table: CPU times; Target accuracy tol“ 10´4, number of testvectors nt “ 20,
failure probability δalgofail “ 10´15; unknowns of corresponding problem 638,799
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Randomized local model reduction (space) Numerical experiments

Numerical Experiments for a transfer operator with slowly
decaying singular values

Numerical Experiments: subdomains
§ local (oversampling) domain Ω :“ p´2, 2q ˆ p´0.25, 0.25q ˆ p´2, 2q
§ Consider PDE: linear elasticity in Ω (isotropic, homogeneous)
§ Goal: Construct reduced space on

Ωin “ p´0.5, 0.5q ˆ p´0.25, 0.25q ˆ p´0.5, 0.5q

Figure: ΩzΩin
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Randomized local model reduction (space) Numerical experiments

Linear elasticity on Ω :“ p´2, 2q ˆ p´0.5, 0.5q ˆ p´2, 2q
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Figure: Convergence behavior of adaptive algorithm (left) and effectivity of a
posteriori error estimator ∆{}T h ´ PRn

rand
T h} (right) for increasing number of test

vectors nt .
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Randomized local model reduction (space) Numerical experiments

Olimex A64: Maxwell’s equation (results by Andreas Buhr)

§ global discretization: about 65 million degrees of freedom
§ 1120 subdomains
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Randomized local model reduction (space) Numerical experiments

Error Estimator Decay
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Randomized local model reduction (space) Numerical experiments

CPU timings

(on laptop)
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Randomized local model reduction (time)

Outline

§ Projection-based model order reduction in a nutshell

Randomized error estimation

§ Localized Model Order Reduction

Constructing optimal local approximation spaces (in space)
Approximating optimal local approximation spaces via random
sampling
Generating quasi-optimal local approximation spaces in time by
random sampling

References:
§ KS, Schleuß, Optimal local approximation spaces for parabolic problems, in

preparation.
§ KS, ter Maat, Generating quasi-optimal local approximation spaces in time by

random sampling, in preparation.
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Randomized local model reduction (time)

Decay behavior of solutions of certain PDEs in time

§ The solution space of certain system of ordinary/partial differential
equations in time is locally low-rank

Consider

Btu ´ divpκpx , tq∇uq “ 0, in D ˆ p0,T q,
upx , tq “ 0 on BD, upx , 0q “ u0pxq.

There holds: }up¨, tq}L2pDq ď e´Cpκqt}u0}L2pDq.

§ Idea: Exploit decay behavior to efficiently construct local reduced or
multiscale spaces in time.
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

§ Define transfer operator T0Ñt˚ : L2pDq Ñ Ht˚ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t˚,
where

Ht˚ :“
 

wp¨, t˚q P L2pDq : w solves PDE with wp¨, 0q P L2pDq, f ” 0
(

.
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

§ Define transfer operator T0Ñt˚ : L2pDq Ñ Ht˚ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t˚,
where

Ht˚ :“
 

wp¨, t˚q P L2pDq : w solves PDE with wp¨, 0q P L2pDq, f ” 0
(

.

§ Heat equation with rough coefficients: T0Ñt˚ is compact thanks to
the Caccioppoli inequality:

Proposition (Caccioppoli inequality in time (KS, terMaat 2020))

Let w satisfy the weak form of the heat equation with right-hand side
f ” 0 and arbitrary initial conditions wpx , 0q and let % P R with % ą 0.
Then, we have

}wp¨, t˚q}2L2pDq`}κ
1{2∇w}L2pp%,T´%q,L2pDqq ď

1
%
}w}2L2pI ,L2pDqq.
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

§ Define transfer operator T0Ñt˚ : L2pDq Ñ Ht˚ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t˚,
where

Ht˚ :“
 

wp¨, t˚q P L2pDq : w solves PDE with wp¨, 0q P L2pDq, f ” 0
(

.

§ Heat equation with rough coefficients: T0Ñt˚ is compact thanks to
the Caccioppoli inequality.

Proposition (Optimal approximation spaces (KS, terMaat 2020))

The optimal approximation space in Ht is given by

Hn
t˚ :“ spantφt

˚

1 , ..., φt
˚

n u, where φt
˚

j “ T0Ñt˚ϕt˚

j , j “ 1, ..., n,

and ϕt˚

j eigenfunctions of the transfer eigenvalue problem: Find
pϕt˚

j , λt
˚

j q P pH0,R`q such that

p T0Ñt˚ϕt˚

j , T0Ñt˚ w qL2pDq “ λt
˚

j pϕ
t˚

j , w qL2pDq @w P H0.

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 43 / 49



Randomized local model reduction (time)

Approximation of optimal spaces by random sampling

§ Apply T0Ñt˚ to n mututally independent random initial conditions.
§ Start collecting snapshots after a certain amount of time steps to let

higher frequencies decay.
§ Add snapshots of simulation with prescribed initial condition u0 for

few time steps to snapshot set.
§ Apply SVD to collection of all snapshots to construct reduced space.
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Randomized local model reduction (time)

Approximation via random sampling for time-dependent data

§ To capture time-dependent data start at different points in time
§ Define transfer operator TtiÑtj that solves PDE for arbitrary initial

conditions, arbitrary starting time ti and evaluates corresponding
solution in tj

§ Theory for T0Ñt˚ can directly be extended to TtiÑtj

§ Choose n random points of time ti , i “ 1, . . . , n and apply TtiÑtj to a
random initial condition (mutually independent).

§ Apply SVD to collection of all snapshots to construct reduced space.
§ Advantage: reduced models can be constructed in parallel
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Randomized local model reduction (time)

Numerical experiments: Stove problem

§ Ω “ p0, 1q ˆ p0, 1q, final time T “ 10
§ Consider:

Btupx , y , tq ´∆upx , y , tq “ f px , y , tq in Ωˆ p0,T q,
u “ 0 on BΩˆ p0,T q,

upx , y , 0q “
4
ÿ

k“2

sinpkπxq sinpkπyq.

§ Use FEM with h “ 0.01 in x- and y -direction, implicit Euler with 300
time steps

§

§ high dimensional discretization: linear FE, h “ 0.01 in each direction
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Randomized local model reduction (time)

Numerical experiments: solution at different points of time
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Randomized local model reduction (time)

Numerical experiments: error, singular values, random
starting points in time ti
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§ Consider 10 different random starting points
§ Collecting snapshots between the 12th and 15th time step after ti

ùñ Dimension of reduced space is 17

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 48 / 49



Summary

Summary

§ Randomized error estimators build on concentration inequalities for
Gaussian maps can provide

... a very accurate estimate of the error at high probability

... at low cost.

§ Localized model order reduction: Exploit decay behavior of solutions
of certain PDEs to construct optimal local approximation spaces

§ Randomized methods are well suited to approximate the range of maps
that are low-rank; Examples: local solution spaces in space or time

Probabilistic a priori error bound/Numerical experiments for local
solution in space: convergence rate is only slightly worse compared to
the optimal rate (factor

?
n)

required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos

Thank you very much for your attention!
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Comparison with Krylov subspace methods

randomized methods Krylov subspace methods
computational stage A: Tmultpk ` ntq `Opk2mq

costs stage B: Tmultpkq `Opk2pm ` nqq ideally Tmultpkq `Opk2pm ` nqq

stability inherently stable inherently unstable
parallelizable yes no
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Numerical experiments: Linear elasticity with dimpPq “ 20

§ Consider ´divpE pmqC : εpupmqqq “ f in Ω
with

C stiffness and ε strain tensor
vertical unitary linear forcing f (red
arrows)
zero Dirichlet boundary conditions at ||||

§ E pmq: log-normally distributed random field
on Ω, use truncated Karhunen-Loève
decomposition with 20 terms

§ We use a tensor-based model reduction
method (PGD) and estimate the relative
root mean square error

Figure: Boundary conditions, f

Figure: Realization of field

logpEpmqq

Figure: Corresponding solution

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 49 / 49



Steering the (primal) model reduction approximation

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

PGD iteration M

Exact error
Residual ∆res

M

Stagnation ∆stag
M,k with k = 1

Random dual (K=3, rank=1)
Exact random dual

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

PGD iteration M

Exact error
Residual ∆res

M

Stagnation ∆stag
M,k with k = 3

Random dual (K=3, rank=3)
Exact random dual

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

PGD iteration M

Exact error
Residual ∆res

M

Stagnation ∆stag
M,k with k = 5

Random dual (K=3, rank=5)
Exact random dual

§ ∆res
M : dual norm of residual divided by dual norm of r.h.s. (no inf-sup)

§ ∆stag
M,k : relative hierarchical error estimator using k increments
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